Session 1-1 第六回西日本強磁場科学研究会 (2019 年 9 月 9 日 名古屋大学)

タイトル: 強磁場コラボラトリーと日本の強磁場研究ネットワーク形成 講演者: 野尻浩之^A

所属: ^ 東北大学金属材料研究所

要旨:強磁場は、物質科学、材料科学の双方に必須の基盤的環境であり、電子状態評価の標準的手法として、あるいは強磁場下で出現する新物質相、新現象発見の契機として、また、生物、化学、複雑系において NMR 等のスピンのゼーマン分裂を利用したプローブとして利用され、関連分野で重要な役割を果たしている。実際、強磁場下の物質研究により、凝縮系物理学における多彩な現象の発見とそれに伴う物質観の革新が行われてきた。また、超強磁場下における酸素の新構造の発見や基礎物理学と連携した新粒子の探索など、強磁場研究は、固体物理の枠を越えて広がり、発展している。このように、強磁場研究のフロンティアを追求し、極限的環境における物質の予想外の状態を明らかにすることは、学術的に大きな可能性と意義がある。

強磁場分野は、近年、科学技術大国で例外なく大規模強化が行われている。その理由は、物質・材料 科学研究の重要性が増しており、強磁場施設がその拠点研究施設であるためである。国外では、米国 国立強磁場研究所が定常とパルス磁場を統合した国立施設として整備され、世界最高の45 Tのハイ ブリッド型定常磁石を有している。一方、欧州では、仏が同様の総合的国立施設を形成し、蘭の定常 強磁場の更新、ドイツのパルス磁場の新設等が行われ、これらの施設は EU 強磁場研究所(EMFL)とし ての統合運用が行われている。一方、中国では、欧米に匹敵する強磁場施設が武漢(パルス)、合肥(定 常)で国家プロジェクトとして運用されている。我が国は、強磁場分野において、歴史的に高い国際 競争力があり、パルス強磁場においては非破壊型と破壊型を統合した研究により世界をリードする一 方、大電力型の定常強磁場設備では、大きな差を付けられている。これに対し、強磁場コラボラトリ ーは、国際的な主流の統合的強磁場施設を目指す計画であり、戦略的に超伝導磁石の強磁場化と準定 常磁場を整備することで、大電力型定常強磁場領域の弱点を克服し、日本の優位性復活を目指す。

強磁場コラボラトリーの実施機関は、東京大学物性研究所・国際超強磁場科学研究施設、東北大学 金属材料研究所・強磁場超伝導材料研究センター、大阪大学大学院理学研究科附属先端強磁場科学研 究センターの大学3機関・施設であり、一体的に運営を行うために、2019年3月に強磁場コラボラト リー運営に関わる協定書が締結され、関係3機関の機関レベルにおける事業として実施されている。 強磁場コラボラトリーにおける定常磁場部分に関しては、東北大学が、関連機関である物質・材料研 究機構との連携協定にもとづく関連研究者の協力も得て、全日本定常強磁場拠点の整備・運営を担う。 一方、準定常磁場、100 T 非破壊パルス磁場の整備は物性研究所が行い、破壊型の電磁濃縮、非破壊 長時間パルス磁場、準定常磁場を備えた世界 No.1 の総合的パルス強磁場研究拠点として整備し、大 阪大学の複合極限強磁場設備と合わせて、全日本的なパルス強磁場施設として一体的に運営する。 2019年12月からは、強磁場コラボラトリーとしての統一的な課題受け付け・審査の実施等、さらに強 化する。物質科学の分野では、高い研究水準をもつ小規模グループをどのように取り込むかが研究力 を左右する。強磁場コラボラトリーでは、主実施機関との連携により計画に参画する関連機関を位置 づけており、大阪大学との連携協定に基づく KOFUC ネットワーク(神戸大、福井大、大阪府立大)や強 磁場施設と放射光・中性子施設が連携した分野融合型の強磁場研究の推進など、学際的、分野横断的 な研究を実施出来る新しい研究連携機能も備える。 タイトル: 放射光X線回折による軌道電子の観測

講演者:澤博、鬼頭俊介、萬條太駿

所属:名古屋大学工学研究科 応用物理

要旨:物性の理解には、相互作用の協力/競合関係の解明が鍵であり、その異方性を支配する電 子軌道の情報は不可欠である。しかし、結晶中の軌道電子の量子パラメータの実験的な決定は独 立なパラメータ数が膨大なために困難である。我々は、良質な単結晶試料と SPring-8 の高品質放 射光X線による高輝度・高分解能回折データを用い、価電子密度分布を最小限のモデルのバイア スで観測できることを示した。原子の持つ内殻電子分布を差し引いた価電子情報を抽出するこの 方法を、コア差フーリエ合成(CDFS; Core Differential Fourier Synthesis)法と名付けた[1]。

新しい方法論の提案には、多角的に調べられた標準物質による検証が不可欠である。そこで、 我々はまず典型的な擬1次元性分子性導体(TMTTF)₂PF₆を選びこの手法の適用を試みた[1]。この 系の最初の報告は1978年で[3]多彩な電子相を持ち多くの研究報告がある。この系の電荷秩序相 は誘電率測定等から二量体内での電荷の偏在が示唆されたが、分子間の電荷移動量が0.2電子程 度と小さいため、実験的な直接証拠を捉えられず"*structure-less transition*"と呼ばれて40年以上ミ ステリーであった[2]。この観点からも、精密な構造解析と電子密度解析の組み合わせによる検 証が有効であると判断して、古い対象ではあるもののこれについて測定と解析を行った。

X線回折強度 I(K)は、結晶構造因子 $F(K) \ge I(K) \propto |F(K)|^2$ の関係にある。この F(K)を用いて逆フーリエ変換を行えば、原理的には電子密度 $\rho(r)$ が計算される。しかし、実際には係数の有限性の為、電子情報の再構成は不可能である (Fig1(b))。そこで、価電子情報が散乱角の低角に偏在することに着目し、高角側の回折強度を用いた精密化で原子位置と内殻電子の情報を決定する。このために、高角の回折強度を精度よく得られる放射光 X線を用いる必要がある。得られた全回折データから計算される測定結晶構造因子 $F_{obs.}(K)$ から差し引いた価電子密度 $\rho_{o}(r)$ を計算して軌道電子を抽出できることを示した (Fig1(c))。この結果、確かに結合性・反結合性の電子密度の差を直接観測できた。

当日は、この方法を遷移金属酸化物に適用した解析などの最 新の結果についても紹介する。

- S. Kitou, T. Fujii, T. Kawamoto, N. Katayama, S. Maki, E. Nishibori, K. Sugimoto, M. Takata, T. Nakamura, and H. Sawa, *Phys. Rev. Lett.* **119**, 065701 (2017).
- [2] J. L. Galigne, et al., Acta Crystallogr. Sect. B 34, 620 (1978).
- [3] C. Coulon, S. S. P. Parkin, and R. Laversanne, *Phys. Rev.* B 31, 3583 (1985)

Fig. 1. (a) TMTTF 分子構造式と結 合性・反結合性の結合部位. (b) 逆フーリエ変換による全電子 密度分布. (c) CDFS 法によっ て得られた価電子密度分布.

タイトル:ダイアモンド格子磁性体 MnSc₂S₄の強磁場磁化過程

講演者:佐藤 和樹, 鳴海 康雄, 松崎 大亮, 竹内 徹也^A, 和氣 剛^B, 中村 裕之^B, 山下 智史^C,

中澤 康浩^c, 冬広 明^c, 橘高俊一郎^D,榊原 俊郎^D, 松尾 晶^D, 金道 浩一^D, 萩原 政幸 所属:大阪大学大学院理学研究科附属先端強磁場科学研究センター,大阪大学低温センター^A,

京都大学大学院工学研究科^B,大阪大学大学院理学研究科^C,東京大学物性研究所^D,

要旨:近年、トポロジカルに安定なナノスピンテクスチャの一つとしてフラストレーション由来の Skyrmion 格子の実現が理論、実験の面から広く研究されており、それに伴う非自明なトポロジカルホール効果などが実験的に検証されている^[1]。

 $MnSc_2S_4$ は Mn^{2+} (S = 5/2)イオンがダイアモンド格子上に配列された立方晶の反強磁性体である ($\theta_w \sim -22.9 \text{ K}$)^[2]。最近行われた中性子回折実験によって、 $MnSc_2S_4$ はゼロ磁場における 2.3 K 以下 で 3 段の相転移を示し、1.46 K 以下の Helical 相において[001]方向に約 2 T 以上の磁場を印加す ることで Triple-*q* 相が発現することが明らかとなった^[3]。この Triple-*q* 相は MnSi などで観測され ているジャロシンスキー・守谷相互作用由来の Skyrmion 格子^[4]と異なり、フラストレーション 由来の Vortex-like な相であると報告されている。

我々は MnSc₂S₄単結晶の[001]方位に対するパルス強磁場磁化測定を行い、飽和に至るまでにこ れまで報告されていない磁気相転移を示唆する複数の dM/dH 異常を観測した。また磁化過程の 温度変化及び磁場中比熱測定から磁場-温度相図を描き、MnSc₂S₄は多彩な相構造をもつ物質であ ることを明らかにした^[5]。今回我々は、1 K 以下での振る舞いに注目すべく、³He クライオスタ ットを用いたパルス強磁場磁化測定を行った。Fig.1 は測定感度を上げるために試料を増やして 行った 1.3K での測定結果である。飽和磁場近傍における明瞭なヒステリシスと、それに至る過 程で磁気相転移を示す複数の微分磁化率のピークを見ることができる。本講演では、1 K 以下で の磁化測定結果も含めて描いた磁場-温度相図を元にして、MnSc₂S₄ において実現し得る多重 Q 秩序の可能性について議論する。

Fig.1 単結晶の MnSc₂S₄ におけるパルス強磁場磁化測定結果。 黒矢印は dM/dH 異常を指している。

- [1] T. Kurumaji et al., Science, 365 online first (2019)
- [2] Fritsch, V. et al., Phys. Rev. Lett., 92 116401 (2004)
- [3] Shang Gao et al., Nat. Phys., 13 157 (2017)
- [4] S. Mühlbauer, et al., Science, 323 915 (2009)
- [5] 佐藤和樹 他, 日本物理学会 第 74 回年次大会(2019), 16pF304-1

Session 1-3(ii) 第六回西日本強磁場科学研究会 (2019 年 9 月 9 日 名古屋大学)

タイトル: BaVS₃の高圧力 — 強磁場下における研究

講演者:田原大夢^A,木田孝則^A,鳴海康雄^A,竹内徹也^A,中村裕之^B,萩原政幸^A 所属:^A大阪大学大学院理学研究科附属先端強磁場科学研究センター,^B京都大学工学部

要旨: バナジウム硫化物 BaVS₃ (空間群 P63 /mmc)は VS6 八面体が c 軸に沿って一次元的に連な った結晶構造を持つ。TM ~ 70 K で電荷密度波の形成を伴う金属-絶縁体転移(MI 転移)を起こし [1]、帯磁率は急峻なカスプを示す[2]。また、Tx~30Kにおいて磁気秩序することが報告されて いる[3]。Per~2.0 GPaの静水圧を印加すると MI 転移が消失することから[4]、これまでこの物質 の物性は主にパイエルス不安定性によって決定されると考えられてきた。ところが、強磁場での 磁化測定の結果、TM以下の温度では約BM~50Tにおいてメタ磁性が観測され[5]、その飽和磁 化の大きさから、この MI 転移は単純な(スピン)パイエルス転移ではなく、複数のエネルギーバ ンドにギャップが開いた三次元的なマルチギャップ系であることが報告された。現在まで、これ らのエネルギーギャップについて、その対称性は議論されているものの、起源については明らか でない。我々はこの物質の物性の全体像を解明するために、粉末試料を用いた高圧力下での帯磁 率およびパルス磁化測定を行っており、その結果について報告する。図1に帯磁率の温度微分を 示す。これまで報告されていなかったが、常圧の帯磁率において 56~60K 付近に通常のパイエ ルス転移では考えにくい MI 転移の"肩"が存在し、この"肩"も TMI と同じように圧力印加に伴い 抑制されていくことが分かった。図2に様々な圧力下における強磁場磁化過程を示す。0.80 GPa までの圧力下ではメタ磁性が存在し、圧力印加に伴って低磁場側へ抑制される振る舞いが観測さ れた。また、この"肩"とメタ磁性は 0.90 GPa の静水圧下で同時に消失するような振る舞いが見ら れた。講演ではこの MI 転移の"肩"に注目し、エネルギーギャップとの関係について議論する。

- [1] T. Inami et al., Phys. Rev. B 66, 073108 (2002).
- [2] G. Mihály et al., Phys. Rev. B., 61, 7831 (2000).
- [3] H. Nakamura et al., J. Phys. Soc. Jpn. 69, 2763 (2000).
- [4] L. Forro et al., Phys. Rev. Lett. 85, 1938 (2000).
- [5] Y. Narumi et al., J. Phys. Soc. Jpn. 76, 013706 (2007).

Session 2-1 第六回西日本強磁場科学研究会 (2019 年 9 月 9 日 名古屋大学)

タイトル: 25T 無冷媒型超伝導磁石を用いた高圧下 ESR 装置の開発と応用

講演者:櫻井敬博^A,木村尚次郎^B,野尻浩之^B,大久保晋^C,太田仁^C

所属:^A神戸大学研究基盤センター,^B東北大学金属材料研究所,^C神戸大学分子フォトサイエン ス研究センター

要旨:近年、極限環境下における ESR 測定の重要性がますます高まっている。我々はこれまで、 0.05~0.8 THz という広い周波数範囲に対して利用可能な電磁波透過型の ESR 用圧力セルを開発 してきた[1]。本講演ではこの圧力セルを用いた ESR 装置について、特に 2017 年より東北大学金 属材料研究所にて共同利用に供されている最大磁場 25 T の無冷媒型超伝導磁石との組み合わせ による ESR 装置[2]と、その応用例について報告する。

圧力セルは内層 NiCrAl、外層 CuBe の外径 28 mm、内径 5 mm の2 層シリンダーから成る。全 ての内部部品が電磁波に対する透過性と靱性に優れたジルコニア系のセラミクスにより作製さ れており、最大発生圧力は 2.5 GPa である。図1 は最大磁場 25 T の無冷媒型超伝導磁石との組み 合わせによる高圧下 ESR 装置の模式図である。光源としてはガン発振器、後進行波管を用いる。 電磁波は圧力セルを透過し、底部のミラーによって反射され、検出器によって検出される。最大 磁場 25 T の無冷媒型超伝導磁石は、高温超伝導体 Bi₂Sr₂Ca₂Cu₃Oy(Bi2223)による内コイル、 Nb₃Sn 中間コイル、NbTi 外コイルから成り、52 mm の室温ボアにおいて、最大 24.6 T の磁場が 発生される。掃引時間は 1 時間程度である。

応用例として三角格子反強磁性体 Cs₂CuCl₄を取り上げ る[3]。本系のスピンは、二次元平面内で、一辺が J、残 り二辺が J'の反強磁性相互作用を持つ異方的な三角格子 を形成する。常圧では J'/J = 0.30 である。本系の ESR の 最大の特徴は、飽和磁場(常圧で 9 T)以上で出現する ESR モードにより J'が精密に決定できる点である。トン ネルダイオードを用いた圧力下磁化測定による飽和磁場 の圧力依存性との組み合わせにより、J'/J の圧力依存性を 精密に決定し、1.8 GPa では J'/J が 0.42 にまで増加してい ることを明らかにした。更に1 GPa 程度以上の圧力下で は新たな磁気相が出現していることを見出した。

T. Sakurai *et al.*, J. Magn. Reson. **259** (2015) 108.
T. Sakurai *et al.*, J. Magn. Reson. **296** (2018) 1.
S. A. Zvyagin et al., Nat. Commun. **10** (2019) 1064.

図 1:25 T 無冷媒型超伝導磁石を用 いた高圧下 ESR 装置.

Session 2-2 第六回西日本強磁場科学研究会 (2019 年 9 月 9 日 名古屋大学)

タイトル:福井大学におけるミリ波帯磁気共鳴装置開発の取り組みⅡ

講演者:石川裕也^A,藤井裕^A,光藤誠太郎^A,浅野貴行^B,堂野壱暉^A,大見謝恒宙^A,

笈田智輝^A,林哉汰^A,福田昭^C,松原明^D,山森英智^B,

Soonchil Lee^E, Sergey Vasiliev^F, 泉小波^G, 菊池彦光^B

所属:^A福井大学遠赤外領域開発研究センター,^B福井大学工学部,^C兵庫医科大学物理,

^D京都大学理学部,^E韓国科学技術院,^FTurku大,^G産総研

要旨:福井大学遠赤外領域開発研究センターでは、ミリ波帯における電子スピン共鳴(ESR)及 び核磁気共鳴(NMR)測定装置開発を行っている。本講演では3部構成とし1)では³He-⁴He 希 釈冷凍機(以下 DR)を用いた超低温高周波 ESR/NMR 二重磁気共鳴装置開発、2)ではジャイロ トロンを用いた高周波パルス ESR システムの開発について述べる。3)は、本題とは少し離れる が、角度回転機構を用いた反強磁性量子スピン鎖 D-F₅PNN (pentafluorophenyl-nitronyl-nitroxide) 単結晶試料の NMR 測定について紹介する。

1)の DR を用いた磁気共鳴装置開発では、超低温($T \leq 1$ K)高周波($f \geq 100$ GHz)領域にお いてシリコン中に希薄にリンをドープしたモデルを用いた量子コンピューティング[1]の演示実 験を目指している。ESR 及び NMR の原理により量子ビットとなる³¹P の制御を行うため、ESR, NMR 双方のシステムが上記領域内で動作できる必要がある[1]。我々はこれまで DR 内に構築し たホモダイン型 ESR 及び NMR システムの評価を行ってきた[2,3]。本装置は温度領域 6.5 - 0.25 K での ESR が可能で、周波数可変共振器により測定可能周波数は 125 - 130 GHz である[2,3]。

2)ではジャイロトロン FU CW VIIB を用いた 154 GHz パルス ESR システムの開発状況につい て述べる。パルス ESR 測定では、振動磁場を短時間に印加することによりスピンの"向き"を制 御するため、連続波(cw)では得られない様々な情報を得ることができる。しかし、パルス測 定では横スピン緩和時間に対し十分に早くスピンを操作する必要があるため、高出力の光源が必 要となる。我々は 154 GHz において約 150 W の出力で発振が可能なジャイロトロン FU CW VIIB を用い、磁気共鳴装置開発を行っている。最近、自由誘導減衰(FID)信号の観測に成功し、さら にフーリエ変換スペクトルを得ることが出来るように検出系を改善した。

3)では、単結晶 D-F₅PNN の¹⁹F-NMR 測定について紹介する。反強磁性結合交替鎖などの一次 元量子スピン系は、ギャップレスとなる磁場中の低温において、朝永-Luttinger 液体(TLL)と呼ば れる量子臨界状態になることが知られている。反強磁性結合交替鎖 F₅PNN は NMR 等から磁場 中で TLL 状態が観測されている[4,5]。さらに、フラストレーションをもたらす次近接相互作用 の存在のために、支配的な揺らぎのモードが磁場領域によって変わる可能性が指摘されている。 この変化を明らかにするためには超微細相互作用を詳細に調べる必要があることから、角度回転 機構をもちいて試料へ磁場を印加する方向に対するスペクトルの変化を調べた。

講演では各々の開発及び測定の進捗について述べる。

B. E. Kane, Nature **393**, pp. 133-137, (1998). [2] Y. Ishikawa *et al.*, J. Milli. Terahz. Waves **39**, pp. 288-301, (2018). [3] Y. Ishikawa *et al.*, J. Milli. Terahz. Waves **39**, pp. 387-398, (2018). [4] M. Takahashi *et al.*, Mol. Cryst. Liq. Cryst. **306**, 111, (1997). [5] K. Izumi *et al.*, Physica B **1191**, pp. 329-333, (2003).